第3回長野県星空継続観察ミーティング

Walker MF.(1970, 1973) Treanor PJ. (1973) Berry RL(1976) Garstang(1984,1986)

In a nutshell, our approach combines very simple Berry's model with high-resolution urbanization data, the Global Human Settlement Layer [8]. Berry's model is semi-empirical formula presented in Eq. (1):

$$B(D) = a\sqrt{P} \left(\frac{U}{D^2 + h^2} + \frac{V}{\sqrt{D^2 + h^2}} \right) e^{-k\sqrt{D^2 + h^2}},\tag{1}$$

where:

B is a brightness at zenith in S_{10} units

- a is a luminosity constant
- **U, V** are constants determined in a semi-empirical way to fit observations
- **D** is a distance from the light source to the observer
- **h** is height of a thin layer from which light is scattered down towards the observer
- **k** is absorption parameter.

Table 1Five constants present in Berry's model as determined by Berry (1976), Netzel & Netzel (2016) and in this study.

Parameter	Berry (1976)	Netzel & Netzel (2016)	This analysis
a	50	2.5	2.37583
U [km ²]	2.59	2.55	5.96033
V [km]	0.08	0	0.02625
h [km]	2.4	1.3	1.13661
k [km ⁻¹]	0.026	0.031	0.03875